和 Nature 封面论文一作,聊了聊天机芯的科研故事
2019-10-22 09:17:26
  • 0
  • 0
  • 0

来源:HyperAI超神经   原创: 神经小刀整理

By 超神经

场景描述:10 月 17 日,由清华大学科协星火论坛联合清华大学类脑计算研究中心以及 HyperAI超神经,举办的「从 AlphaGo 到类脑天机芯片,人工智能走向何处」,在清华大学蒙民伟楼圆满举行。在开场的圆桌论坛环节,清华首位类脑博士邓磊细数自己与类脑结缘的历程,从多个角度对类脑计算进行解读,为各位同学答疑解惑,让我们对类脑计算以及人工智能的发展,有了新的认识。

关键词:类脑计算 人工智能 天机芯片 邓磊

邓磊,清华首位类脑计算博士、美国加州大学圣芭芭拉分校博士后。8 月 1 日《 Nature 》杂志的封面上,展示了文章《面向人工通用智能的异构天机芯片架构》,他作为第一作者,负责了芯片的设计和算法细节。

该论文实现了中国在芯片及 AI 领域《自然》论文零的突破

左边为论文第一作者邓磊

上周四,由清华大学科协星火论坛联合清华大学类脑计算研究中心,以及 HyperAI超神经,举办了「从 AlphaGo 到类脑天机芯片,人工智能走向何处」的主题论坛。邓磊作为特邀嘉宾受邀出席,以圆桌论坛的形式分享了自己的一些观点。本文将跟随论坛上的问题,回顾他在 AI 和类脑计算领域的一些洞见。

学并探索着:类脑计算中心的第一个博士

提问:您是怎么进入到类脑计算这个研究方向的?这个学科具体涉及到哪些内容?

当年读类脑计算博士的时候,类脑计算还未普及,当时还搜索了一下,并没有查到太多有效信息,之后还特意询问了导师……

作为类脑计算研究中心的第一个博士,我见证了类脑中心从零开始走到现在。包括后来的开公司、做研究。2017 年之后,我毕业去了美国,之后转到偏计算机的方向。现在有 50% 是做理论, 50% 是做芯片。

我本科是做机械的,后来发现做机械没有太多天赋,就慢慢转到做仪器,后来还去做过机器人,研究过一些材料和微电,之后开始做 AI 的一些算法、理论,最后才到芯片,慢慢进入到类脑计算。一路上不断走不断学,大概是这样一个过程。

邓磊于 2017 年完成博士学位答辩

当时清华类脑计算研究中心全体合影

注:清华大学类脑计算研究中心,于 2014 年 9 月创立,涉及基础理论、类脑芯片、软件、系统和应用等多个层面。此中心由清华大学校内 7 家院系所联合而成,融合了脑科学、电子、微电子、计算机、自动化、材料以及精密仪器等学科。

类脑计算的研究涉及到了多学科交叉融合。源头肯定还是医学(脑科学),现在的人工智能最初脱胎于心理学和医学,它们为模型提供了一些依据。

接下来的就是机器学习,以后它们肯定还是会走到一起,但现在分开来讲,是因为机器学习有更多做产品的经验,通常是从应用的角度来进行思考。

此外还有计算机科学,现在有 GPU 解决不了的问题,所以阿里华为都开始做自己的专用芯片,对计算架构方向的学生,也可以考虑往这个方向发展。

再往下就是芯片等硬件,这涉及到微电子甚至材料,因为要提供一些新的器件,现在还是用的一些很基础存储单元,但未来肯定会有一些新的器件,比如说碳纳米管、石墨烯等材料能不能应用进来。

另外还有自动化方向,很多做机器学习的人,通常是计算机系和自动化系的,因为自动化是做控制做优化,这和机器学习有异曲同工的地方。在类脑计算中,这些学科很好的融合在了一起。

 作为清华类脑计算研究中心的第一位博士

博士在读期间,他发表了 9 篇学术论文,申请了 22 项专利

提问:当时是有什么样的驱动,或者说什么样的契机,最终选择了这个方向?

用一句话来说,这个方向最大的魅力在于它做不完。

我曾经想过一个哲学悖论,研究类脑计算跟人脑分不开,但用人脑来思考人脑,并不知道会达到什么程度,对它的研究也就永无止尽。

因为人类对自己的思考,是永远会存在的,总是会经历高潮,然后进入平淡期,突然又出现了突破,它永远不会停止。这个角度去看是很值得研究的。

提问:您目前所在的博士后阶段,研究上有哪些不同?

以前在清华做芯片,更多的是从实用的角度,想的是我能做一个设备,或者一个仪器出来。

但是去美国后,更多的是从学科的角度来考虑这个事情,就像计算专业的计算架构,就像 ACM 很多图灵奖,都是从来这方面来看待问题,虽然做同样的事情,思考的角度就不一样了。

如果从计算架构的角度来看,任何一个芯片无非就是计算单元、存储单元、通信就这三个方面,不管怎么做,都是这三个事情的范畴。

天机芯和类脑计算:自行车不是重点

提问:Nature 的这篇文章,是一个里程碑的事件。在过去的几十年中,您认为的里程碑事件有哪些?在类脑计算领域,又有哪些事件推动了行业的发展?

类脑计算这个领域相对复杂,我从人工智能的脉络来梳理,会更明显一些。

人工智能不是单一的学科,基本上可以分为四个方向。第一个是算法方面,第二个是数据,第三个是算力,最后是编程工具。里程碑的事件可以从这四个方向来看。

就算法来讲,当然是深度神经网络,这个是毋庸置疑的;从数据的角度来说,ImagNet 是一个里程碑,之前没有大数据的加持,深度神经网络几乎被埋没。

在算力的角度,GPU 是一个很伟大的诞生。编程的工具,像 Google 的 TensorFlow 之类普及的应用,是推动发展的一个重要因素。

这些事情促进了 AI 的前进,而且它们是一个迭代发展的过程,缺了一个都不会有今天的局面。但 AI 也有自己的局限性,比如 AlphaGo ,它只能进行单任务,除了下棋别的就做不好。这跟大脑是不一样的。

第二个就是可解释性,我们用深度神经网去进行拟合,包括用增加强化学习,但它们内部发生了什么事情,还是不清楚的,一些人正在试图将这个过程可视化或弄清楚它的原理。

第三个是鲁棒性, AI 不像人一样稳定。比如自动驾驶,现在的 AI 也只是被用于辅助驾驶,是因为它还不能保证绝对的安全。

因为这些缺点,必须要去关注脑科学的发展,引入更多的脑科学的机制。在我看来,最迫切的就是让智能更通用化。


最新文章
相关阅读