2017世界科技发展回顾
2018-01-03 20:38:12
  • 0
  • 0
  • 0

来源:信息化协同创新专委会

来自:科技日报

科技政策

美国:多项政策引发不满 人才措施招致批评

2017年,特朗普一上任即签署移民禁令,遭到各大科技公司反对;9月宣布废除奥巴马执政期间推出的“追梦人计划”(DACA),同样令多家科技公司不满。科技公司认为,这些政策会极大削弱美国吸引世界科技人才的能力,造成赴美科技人才大量流失。

相比于移民政策,特朗普政府的气候政策引发的不满更广泛、强烈。特朗普6月宣布美国退出《巴黎协定》,称该协定损害了美国经济,让美国处于不利地位;10月,宣布取消“清洁电力计划”,解绑对发电行业的碳排放限制。美国的缺位让全球应对气候变化努力大打折扣。

此外,特朗普政府5月公布的2018财年预算案中,大幅削减教育、环境、科研、医疗保健方面的投入,同样遭到科学界批评。虽然该预算案中经费削减幅度在国会审议过程中被一定程度降低,但不可否认的是,本届政府对科研的支持力度不比从前。

俄罗斯:转变政府管理职能 支持出口替代项目

为实施普京总统2016年底批准的《俄罗斯联邦科学技术发展战略》,俄加快进行科研机构体制改革。改革主要集中在生物技术、农工综合体研究、医药和跨学科研究等领域,整合后的科研机构遍及全国各地,但研究中心的主体仍将分布在中央联邦区。

2017年,俄继续支持进口替代项目,目前共制定22个进口替代计划,确定1423个技术方向,实施1658个投资项目,对俄企在民用工业的重点领域所实施的研发活动提供经费补贴。2017年俄联邦预算中共安排31亿卢布用于实施该类补贴。

目前俄对科技领域的投入较少,2016年俄R&D投入占GDP比重仅为1.2%,排在全球第35位。为改变这一现状,俄计划未来在远东、东西伯利亚地区建设超前发展区和享有特殊优惠政策的高技术园区。

德国:强化数字经济战略 力促关键技术创新

数字经济是全球经济增长日益重要的驱动力。2017年德国利用担任G20轮值主席国机会,先后召开首届G20数字部长会议、德国“数字峰会”,以及发布“数字战略”,积极推动高速互联网的普及,在更广泛的领域更全面地推广数字经济。2017年4月德国政府发布了“数字平台”白皮书,为德国经济和社会的数字化转型创造有序的法律环境。德国还将继续实施2016年启动的“数字港计划”,推动12个以化工产业为重心的地区转到医疗产业和人工智能产业上。

2017年德国继续加大在关键战略领域创新力度,加强研究与产业合作,积极支持“工业4.0”,在已有11个卓越工业4.0中心的基础上,计划再推出13个全新的卓越工业4.0中心。在政策层面更多地关注以微电子、人工智能、生物技术和量子技术等面向未来的技术为重点的创新政策,联邦经济技术部在微电子领域投入10亿欧元参与IPCEI计划;实施“生物经济”国家政策战略;参与欧盟“量子技术”计划,以及量子技术从基础到应用的国家倡议(QUTEGA);在数字化领域重点关注服务机器人、智能服务、智能住宅、区块链等技术。

日本:政府加大预算投入科改设定“目标领域”

为执行2016年通过的《第5期科学技术基本计划(2016年度—2020年度)》,安倍首相在2017年4月的日本综合科学技术改革会议上宣布,决定在2020年度实现将政府研究开发投资增至GDP1%的目标(约6万亿日元)。

本次综合科技改革会议还设定了“目标领域”。安倍提出“目标领域是指可有效引导民间投资并有效提高财政效率的项目”。四个技术目标领域分别为:信息空间基础技术(人工智能、物联网、大数据)、物理空间基础技术(传感器、驱动器、处理设备、机器人、光/量子)、创新型建设/基础设置维护管理技术和创新型防灾/减灾技术。

英国:增加创新基金投入 着眼未来技术挑战

英国政府在2017秋季预算报告中指出,未来的“全球化英国”应成为企业和创新的中心。它计划将2016年设立的为期5年的国家生产力投资基金运作期限再延长一年,并将原计划额外提供的230亿英镑增加为310亿英镑,将目前的研发投入额外增加23亿英镑。

英国还计划投资5亿多英镑,支持人工智能、5G和光纤宽带等领域的发展。英政府认为,自动驾驶汽车将是未来革命性标志,将优先支持电动汽车。为此将设立一项总额为4亿英镑的充电基础设施基金,另将设立总额为1亿英镑的充电车补助金,以及4000万英镑的充电技术研发费用。此外,还将通过对柴油车征税等措施,为清洁空气基金筹集2.2亿英镑,用以支持地方当局实施地方性空气质量计划。

2017年11月27日,英国政府公布了题为《产业战略:建设适应未来的英国》产业战略白皮书,列出了影响未来的四大挑战:即人工智能、绿色增长、老龄化社会和移动运输技术等。白皮书还列出了英国政府的一系列产业发展支持政策,包括到2027年将研发总投入占GDP的比例提升至2.4%、将研发税收抵扣率提高到12%以及设立产业发展促进基金等。白皮书称,建筑、生命科学、汽车和人工智能等行业将首先受益于这一战略。

法国:政府重视科技引擎 频颁新政支持创业

2017年,法国政坛发生巨变,马克龙以非左非右的中间派政治主张当选法国总统。年轻的法国新领导人也将科技视为国家振兴的重要发动机,为支持初创企业在法国发展,马克龙频繁颁布新政:一是重申对法国税收制度进行改革的决心,为创业者减负;二是宣布启动新的“科技签证”,为创业者、初创企业雇员和投资人3类外国科创人才进入法国工作和生活提供便利的行政手续;三是与德国和意大利协作,推动设立100亿欧元的欧洲创业投资基金,为创新企业提供资金支持。

乌克兰:成立战略领导机构 建立国家研究基金

受国家局势不稳影响,乌克兰科技近年来在艰难中前行。为提振这一局面,2017年8月,乌克兰成立了由总理领导的全国科学和技术发展委员会,作为乌克兰科学发展战略的最高领导机构。

在此基础上,乌克兰还拟在2018年建立一个国家研究基金,致力于促进大学和学术部门、学术界和工业界之间的合作,为基础性研究和应用性研究提供支持,并资助乌克兰本土学者前往国外研习,支持召开重要国际科技创新会议等。在内外交困的形势下,这些举措是否能够帮助乌克兰科技重振雄风,或仍有待观察。

以色列:大力扶持创新企业 积极引进科技人才

2017年,以色列注重扶持初创企业初期发展,以色列创新局选定包括雷诺日产在内的5家特许经营公司利用其“科技创新实验室”,分别关注工业物联网、智能基础设施、智慧出行、先进材料以及独特食用功能性原料5大领域的创新技术,为其提供概念验证阶段的技术与相应的基础设施支持。

创新局还设立新项目,扶持Check Point、Mobileye、Wix等大型科技企业研发新技术,保持其竞争优势,推动以色列经济增长。此外,以色列财政部与证券管理局将设立四项新投资基金,每项总金额不低于4亿谢克尔(约1.12亿美元),以增加科技领域的投资份额。

以色列创新局决定允许其资助的以色列企业向国外企业机构等进行专利授权。新的政策下,公司不必立即返还所有受助资金,可以选择在签署对外授权协议并收到相关款项后再对创新局进行偿还。

为应对可能出现的程序员和互联网专家严重短缺问题,以色列批准聘请500名外国高科技人员来以工作,并提议在未来6年将高科技学术研究的学生人数增加40%;此外,以色列创新局公布12家“Tnufa”创业项目的支持机构名单,这些机构能为外来者提供在以色列创业的机会,并有望获得最长达5年的专家签证。

韩国:改革科研管理机制 确定科技核心方向

韩国2017年在科技管理机制和管理体系上下了很大功夫。文在寅政府成立后,韩国将“未来创造科学部”更名为“科学技术信息通信部”,并创设了国家科学技术咨询会议,直接隶属总统并由总统担任委员长。该会议承担总统科技咨询职能,同时也作为跨部门的科技议题高级协调机制发挥作用。此外,新政府还重新组建了副部级的科学技术创新本部,作为韩国科技创新领域的总指挥部。

韩国政府科技管理部门在国家创新体系中的核心地位一直在得到强化。科学技术信息通信部在获得科技研发投入的建议权、调整权和审议权之后,在新政府时期可望获得更加直接的分配权。

新政府的“科学技术基本计划”尚未完成,但是核心方向已经确定为第四次产业革命战略。今后5年韩国科技和产业发展将围绕这一核心展开。韩国已经公布的“旨在应对第四次工业革命的国家技术资格改革方案”,确定在机器人、3D打印机等17个第四次工业革命核心领域新增国家技术资格证书制度,以及新设环境危害管理、防灾等技术资格,促进新兴技术发展。

巴西:推进国家科研战略 促进技术创新合作

2017年,在宏观科技领域,巴西政府强调科技与创新作为国家发展核心的重要性,继续推进“国家科技创新战略”,整合联邦、州、市各部门力量,进一步加强国家科技创新体制改革,推动法律框架的完善,强化研发基础设施建设,通过科技创新调节社会和区域间不平衡,促进经济可持续发展。

巴西政府把航空航天、能源、核能、生物技术、数字经济等领域作为国家科技优先发展领域。巴西科研项目信贷局支持巴西本国企业、高等院校、科研机构间的技术创新合作,通过“绿黄基金”“初创企业投资借贷基金”等,为科技创新和技术转移提供金融支持。

基础研究

美国:引力波探测入佳境 中微子研究意义大

2017年,激光干涉引力波天文台(LIGO)科学家团队先后四次宣布探测到新引力波,尤其是对GW170817事件的探测,让人类首次见识到源自双中子星并合的引力波,全球数十家天文台通过电磁信号观测到这次并合事件,共享科研成果。美国科学家在引力波天文学研究中发挥着最重要的作用,2017年诺贝尔物理学奖授予三位美国科学家也是实至名归。

相比引力波天文学的进展,美国科学家在其他基础研究领域的成果或许声势不大,却也意义不凡。如中微子研究方面,科学家不仅首次捕捉到中微子与原子核间相干性散射,还首次测量了地球吸收高能中微子的情况;而其他如“时间晶体”的研制,为物理学研究打开了新的大门;具有负质量的超流体的开发,则为探秘中子星、黑洞等宇宙现象提供了全新的实验工具。

以色列:重元素形成预测获证实 仿生扇贝有望造望远镜

以色列希伯来大学茨维·皮兰教授领导的研究小组28年前在《自然》上发文推测,两颗中子星相撞不仅在时空结构中产生引力波,而且能产生伽马射线爆发,由此形成黄金、钚和铀等富中子重元素。国际科学家研究组2017年10月中旬表示,他们在8月份首次目睹了两颗超密度中子星相撞,并证实了皮兰教授他们的预测。

以色列和瑞典的科研人员表示,